

VIP5 Pro Controller 🖾

Control system for small and medium size Lubrication Systems Software Version 3.0

Version in compliance with Directive CE 94/9 (ATEX)

User Operating and Maintenance Manual

Original text translation

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. MARKING PRODUCT
- 3. TECHNICAL CHARACTERISTICS
- 4. PRODUCT FEATURES
- 5. DESCRIPTION OF OPERATING PROCEDURES
- 6. INPUTS/OUTPUTS
- 7. OPERATOR INTERFACE FRONT PANEL
- 8. OPERATING MODE
- 9. CYCLE MONITORING
- 10. SETUP PROGRAMMING
- 11. FIXING AND INSTALLATION DETAILS
- 12. PROBLEMS AND SOLUTIONS
- 13. TECHNICAL SPECIFICATIONS
- 14. DISPOSAL PROCEDURES
- 15. ORDERING INFORMATION
- 16. MOVING AND SHIPPING
- 17. OPERATING PRECAUTIONS

Manual drawn up in accordance with EC Directive 06/42

C2163IE WK 41/14

ATTENTION: Automatic Control device

This control device is designed to automatically activate solenoid valve, motors, pumps and other control devices based on timer or other inputs.

Failure to follow safety information may lead to serious personel injury.

1. INTRODUCTION

Thank you for purchasing the Dropsa VIP5 Pro controller 🐵– controller – The control device for Lubrication Systems

The Controller subject of this operating and maintenance manual is an evolution of the Vip5 Pro Atex family of advanced lubrication control system. It maintains all its basic features and has additional functions and features such as the ability to directly switch on/off three-phase pump and other devices. This product is certificated for Equipment and protective systems intended for use in potentially explosive atmospheres that in compliance with the ATEX Directive 94/9 CE.

It is possible to obtain the latest documentation by visiting our website, www.dropsa.com

This manual contains important operating and safety information for users of this product. It is essential that you carefully read this manual and conserve a copy with the product so that other users may consult it at any time.

1.1 DEFINITION OF LUBRICATION AND STANDBY PHASE, LUBRICATION PHASE, AND LUBRICATION CYCLE

In this manual the **LUBRICATION PHASE** and **LUBRICATION CYCLE** refer to the specific instances when the lubrication pump is operating to provide lubrication in a system.

The **LUBRICATION CYCLE** is made up of: **Cycle Start** -> **Control** of a sensor device -> **Delay** time to allow sensor device to stabilize -> **Wait** Time before another Cycle Start. This sub-cycle can be repeated as many times as required and the completion of this repetition is considered the **LUBRICATION PHASE.** Fig. 1 illustrates this graphically.

Fig.1 A Lubrication Phase can comprise of many Lubrication Cycles

The STANDBY PHASE defines the interval between each LUBRICATION PHASE.

2. PRODUCT MARKING

On the door of **VIP5 Pro controller** is placed the label of Atex marking (fig. 2).

2.1 Legend of the ATEX marking

<u>II</u> Device Group: all areas at risk of explosion (not for use in underground mines and their above ground equipment)

2GD The categories define which zones the devices may be used in. The classification states how frequently and in what concentration the ignitable mixture occurs. Furthermore, differentiation is made as to whether the hazard is due to gases, vapors and mists or due to dust.

<u>EEx d</u> Identifier: define the electrical device.

Dropsa S.p.A.	CODE:]
Via B.Croce,1	TECHNICAL FILE REF.:]
20090 Vimodrone	WORK ORDER:]
(Milano) ITALY	NOTIFIED BODY]
	YEAR:] O
Dropsa]
22-00	AMBIENT TEMP:]
C E 🔂 112GE) Exd 118+H2 T6 1P6	5

IIB+H2 Explosion Group: device group II is sub-divided into Explosion Groups A, B or C. This classification is dependent on the typical material properties of the gases and vapors that occur. The hazard level of materials increases from Explosion Group IIA to IIC.

<u>T6</u> Temperature class for inflammable gas.

T 85°C Max surface temperature for combustible dust.

IP65 Protection grade

3. TECHNICAL CHARACTERISTICS

Supply voltage (see note par.5.1)	110V~ - 230V~ - 400V~ - 460V~
Power Consumption	2 W (In Stop) - 10 W (In Start)
Temperature Operating Range	- 5 °C ÷ + 70 °C
Permissible Temperature storage range	- 20°C ÷ + 80 °C
Operating Relative Humidity	90% max
Frequency	50/60 Hz

4. PRODUCT FEATURES

VIP5 Pro Atex offers many functions, the following brief summary are:

- Integrated LCD Display for diagnostic and ease of use;
- Diagnostic and Lubricant Counters for Operation and Alarm conditions;
- Three separate inputs (to monitor Dual line pressure switches, progressive cycle switch, injector pressure switch and external signals to use as a counter for standby or lubrication phase);
- Signal Inputs can be NPN, PNP or a Clean Contact (or Namur style switching);
- Time or counter based determination of both Lubrication and Standby Phase;
- Counter based Lubrication phase can be used independently while monitoring correct function of a cycle switch, ideal for use in impulse piloted system (e.g. chain and conveyor lubrication);
- Ability to configure pump output for Electrical or pneumatic pump (pump On/Pump Off values can be set individually);
- General Alarm Output Relay can be a constant signal or generate a coded alarm to allow remote PLC to determine nature of alarm;
- Monitoring and indication of the thermal protection trip input;
- Minimum Level Input;
- 4..20mA Input for analogue measurement of Reservoir Level;
- Maximum level monitoring;
- Separate remote output signalling for Minimum Level alarm and General Alarm conditions;
- 4-20 mA continuous input level monitoring;
- Ability to control line invertor valves for dual line systems with pneumatic or electromagnetic actuators;
- Ability to power input and output circuits using different power sources;
- Ability to isolate the voltage of the inverter valve power circuit from the main power framework;

2. PULSE

- Remote reporting of pump operating;
- Management of charging (automatic charge);
- Solenoid valve air pipes cleaning, at the end of lubrication cycles;
- Possibility of selection local/remote mode with remote cycle start;
- Remote cancellation of error.

All configuration parameters can be set from the Setup menu via the LCD display using the front panel keys. No complex internal switches need to be set.

5. DESCRIPTION OF OPERATING PROCEDURES

The VIP5 Pro Atex controller has three operating modes:

1. CYCLE

3. FLOW

CYCLE and PULSE modes are designed for intermittent or continuous lubrication system that requires the control of a pump and monitoring of feedback signals to determine when lubrication has successfully completed.

FLOW is designed as a monitoring only operating mode that allows the user to monitor a pulse signal and determine the actual flow rate. This is useful for process control and generally used in re-circulating systems.

5.1 CYCLE and PULSE Control System operating Principles.

The **VIP5 Pro Atex** control system is designed to control intermittent or continuous lubrication system with a variety of control inputs. Intermittent operating principle is based on three distinct phases.

- PRELUBE Phase -> Pre Lubrication that occurs during power up of a system.
- LUBRICATION Phase (Lube -> Wait stages) -> This is when lubricant is provided (as above)
- STANDBY Phase -> The system is inactive awaiting for the next LUBRICATION PHASE

Additionally, the VIP5 Pro Atex Control system can also be used as a simple monitoring device in the "FLOW" operating Mode described later in this manual.

5.1.1 PRELUBE Phase

The user can specify the number of lubrication cycles up to a maximum of 250.

If Prelube is set to zero, the **VIP5 Pro controller** (controller will not perform any pre-lubrication; in this case if the START parameter setting is "Resume", when the system is turned on it will revert to its pre-power down, or it will start from a lubrication cycle if the setting of the start is "Lube".

When Prelube is set greater than zero, pre-lubrication will start in the following cases:

- When the **VIP5 Pro controller** System is powered on;
- After the RESET button is pressed;
- After the **VIP5 Pro controller** Sexists from the SETUP menu.

5.1.2 LUBE (Lubrication) Phase

The Lubrication Phase is a set of Lubrication Cycles that can be repeated up to 250 times.

A Lubrication *Cycle* consists of activating the lubrication pump, then *Control* monitoring a feedback signal from a sensing device if installed. There is then *Delay* period before switching off the pump, and a *Wait* period before the lubrication cycle can be repeated. Specifically:

- *Cycle* (time) determine how long to wait for the control signal before determining an alarm condition.
- **Control** (Type) determines what kind of control signal (Single Line, Dual Line, Injectors). Alternatively a Timer only setting means no monitoring will occur.
- **Delay** (time): Is how long to wait for the signal to be confirmed and switch off the pump (in Pressure switch applications).
- **Wait** (time): determines how long to wait in a pump off condition before repeating the cycle. This is necessary in injector systems and represents the minimum time required for the injectors to reset. In progressive systems for example this can be set to zero.

5.1.3 STANDBY Phase

During the **Standby** the VIP5 Pro Atex switches off the pump and waits for the start of another **Lubrication Phase**. The duration of the **Standby** phase can be determined by a countdown timer or a by an external pulse signal that can be used as a counter. The **VIP5 Pro controller** (also allows a combination of both timer and external pulse signals to determine either the next Lubrication phase or to signal an alarm if external pulse signals are not received within a pre-set time.

5.2 FLOW MODE OPERATING PRINCIPLES

The **VIP5 Pro controller** (can also be used as a simple Flow monitoring system. When *Flow* mode is selected the unit operates as a flow display and monitors an external signal to calculate the flow based on external impulses. The User can additionally set a minimum and maximum Flow limit. If the flow is out of these limits, the remote alarm contact and the alarm LED on the front panel are both activated.

6.1 ELECTRICAL CONNECTIONS

Fig. 3

Inside the control panel there are six connecting terminal boards (see image).

- XM0 Terminal Board must be connected to supply voltage of control panel and three phase output control of the pump.
- **XM1** Terminal Board must be connected to Input- devices
- XM3 Terminal Board must be connected to Analog- devices
- XM4 Terminal Board must be connected to customer exchange signals
- XM5 Terminal Board must be connected to output devices
- **XD** Terminal Board must be connected to input ex barrier devices

The devices connected to the terminal change according to the working configuration choice (SEP, DUAL TIME, DUALTIME, PS). Table 1 shows all the configurations with their associated devices. On the terminal XM1 you can configure the device to connect PNP and NPN, through the setting of a connecting bar (as in Tables 2 and 3, marked in yellow) In some configurations, there are some simple devices, which are interfaced to the Vip through the barriers. In these cases,

the connection must be effected in the terminal EX (blue) as shown in Tables 2-3.

NOTE: During the connection of field devices use the internal ducts to maintain tidy cabling.

All connections must be made by qualified staff in compliance relevant regulations. Only performing wiring operation when power is completely removed from the unit.

Be careful that:

- The wires are not shorted;
- Have adequate insulation;
- Intact until their entry into the terminal and properly locked.

Tab.2

Tab.3

	Location	Function
Block	Num	Function
	1	
XMO	2	SUPPLY PANEL
	3	
	4	
	5	PUMP CONTROL
	6	

Block		Signal loval		Function	Nata
Block	Num		Signal level	Function	Note
	+	+			
	17	PNP		MAXIMUM LEVEL	DE CONNECTED TO BADDIED VD 1/2
	-	-	DIGITAL INFOT	INPUT	SIMPLE DEVICE
	18	NPN			(SIMPLE DEVICE)
	+	+			
	19	PNP	DIGITAL INPUT	MINIMUM LEVEL	
	-	-		INPUT	
	20	NPN			
	+	+		PULSE INPUT/SUSPEND	
	23	PNP			
	-	-	DIGITAL INFOT		
	24	NPN			
	+	+			
	25	PNP		PRESSURE	RE CONNECTED TO BARDIER YD 4/5/6
	-	-	DIGITAL INFOT	SWITCH 1 INPUT	
	26	NPN			(SIMPLE DEVICE)
	+	+			
	27	PNP		PRESSURE SWITCH	
	-	-	DIGITAL INFOT	2 INPUT	
	28	NPN			

	3	IN		
XM3	4	IN	ANALOG INPUT	LASER PROBE
	+	+		

	8	С			
	9	NC	FREE CONTACT	MIN LEVEL ALARM	
	10	NO			
XM4	11	С			
	12	NC	FREE CONTACT	COMM.ALARM	
	13	NO			

	1	OUT		LINE 1	
VME	2	OUT	30LENOID VALVE		
XIVI5	5	OUT	SOLENOID VALVE	LINE 2	
	6	OUT			

	1	+			
	2	SIGN.	DIGITAL INPUT	MAXIMUM LEVEL	BARRIER CONNECTION
VD	3	-			
۸D	4	+			
	5	SIGN	DIGITAL INPUT	CICLE SENSOR	BARRIER CONNECTION
	6	-			

These connections are routed from the main terminal boards on the **1639187** board according tables below. For correct wiring you should note the following:

- 1. All input and output signals refer to a nominal voltage of 24Vdc.
- 2. The outputs on terminal board M1 refer to voltage indicated as Vio on terminal 6 and 7 of M2.
- 3. The framework is provided with (Vio) power supply input coinciding with (Vint) internal power supply via bridges on the terminals: M2: M2.5 with M2.7, M2.4 with M2.6
- 4. Outputs equipped with galvanic insulator; If you want to enter with active signals alimentation is taken outside the framework is necessary to remove the connections on M2.5 with M2.7, M2.4 with M2.6; In this case is also necessary carry this power to M2.7 e M2.6 in according to polarity.
- 5. Dual line command connections on M5 are configured for 24Vdc changeover valve. If the changeover solenoid use different power supply, remove connection on terminal M7 and M5 and carry to M5 and connect the appropriate voltage on M5.3 and M5.4.
- 6. Connections on terminal M6 are not clean contacts.
- 7. Connections on terminal M4 are SPDT type clean contacts.

For further details also check the completed electrical diagram enclosure with your specific equipment.

NOTE: To connect micro-switches or clean contacts inputs, equipped by creating a terminals for the positive power supply (+) and the relative input P (IN +), you must make a link between (+) and (IN+) after that connect the 2 wires of micro-switch at (-) or (IN-)

Locatio	n		Signal Javal	Function	Noto
Block	Num		Signal level	Function	Note
	1	+	24 Vdc Inputs (Vio+)		
	17	IN +	Input P	Maxiaval	
	2	-	0 Vdc Inputs (Vio-)	IVIAX IEVEI	
	18	IN -	Input N		
	3	+	24 Vdc Inputs (Vio+)		
	19	IN +	Input P	Min level	
	4	-	0 Vdc Inputs (Vio-)		
	20	IN -	Input N		
	5	+	24 Vdc Inputs (Vio+)		
N/1	21	IN +	Input P	Air proceuro cwitch	Safety pressure switch, for example air-oil
IVIT	6	-	0 Vdc Input (Vio-)	All pressure switch	systems
	22	IN -	Input N		
	7	+	24 Vdc Inputs (Vio+)		
	23	IN +	Input P	PULSE	Devices for counting
	8	-	0 Vdc Inputs (Vio-)		Devices for counting
	24	IN -	Input N		
	9	+	24 Vdc Inputs (Vio+)		First sensor input for system monitoring. (Pressure injector, control loop for progressive, suspend for timer)
	25	IN +	Input P	D1	
	10	-	0 Vdc Inputs (Vio-)	F I	
	26	IN -	Input N		
	11	+	24 Vdc Inputs (Vio+)		
	27	IN +	Input P	D٦	Second sensor input for system monitoring.
	12	-	0 Vdc Inputs (Vio-)	12	for cycle SEP)
	28	IN -	Input N		
	13	-	0 Vdc Inputs (Vio-)	Thermal protection	Input for motor thermal protection alarm
N/1	29	IN -	Input N	mermai protection	
	14	-	0 Vdc Inputs (Vio-)	Remote control	Enables remote control of the cycle
	30	IN -	Input N		
	15	-	0 Vdc Inputs (Vio-)		If active the remote control input, activates
	31	IN -	Input N	Remote cycle start	the cycle start
	16	-	0 Vdc Inputs (Vio-)	Clear errors	Delete any errors
	32	IN -	Input N		

Locatio	on		Signal loval	Function	Neta
Block	Num		Signal level	Function	Note
	1	Vac1	19 Vac	ACipput	Descible inputs also with 24//ds
	2	Vac2	19 Vac	AC IIIput	
	3	Earth	Earth	Earth connection	If you want to report back to the ground
N/10	4	Vint -	GND internal logic	Power logic and relay	power Connect these terminals 2
IVIZ	5	Vint +	24 V internal logic	control	max 1,5 A
	6	Vio -	0 Vdc Inputs		
	7	Vio +	24 Vdc Inputs	Supply of external inputs	Max 1,2 A
	8	Vio -	0 Vdc Inputs		

Locati	Location		Signal level	Eurotion	Noto
Block	Num		Signal level	Function	Note
	1	0:10V	0:10 V input	Analog input 0:10V to	Not isolated not huffered load 20 Kehm
	2	0 V	0:10 V reference	future expansion	Not isolated, not bullered , load 20 Kollin
	3	4:20mA	4:20 mA input	Analog input 4:20mA to	
M3	4	0 V	4:20 mA reference	future expansion	Not isolated, not buffered, load 220R
	5	4:20mA	4:20 mA input	Analog input 4:20mA to	
	6	0 V	4:20 mA reference	future expansion	Not isolated, not buffered, load 100R
Locati	on		Signal lovel	Eunction	Note
Block	Num		Signalievel	runction	Note
	1	С			
	2	NC	SPST, 3 A 250Vac	Command "Alarm" on Vip5 Pro panel	
	3	NO			
	4	С	SPST, 3 A 250Vac	Command cleaning	
	5	NO	resistive load	nozzles	
	6	С	SPST, 3 A 250Vac		
	7	NO	resistive load	Load command	
	8	С			
N 4 4	9	NC	SPS1, 3 A 250Vac	Low alarm level	
1014	10	NO			

11

12

13

14

15

16

17

18

С

NC

NO

С

NO

С

NC

NO

SPST, 3 A 250Vac

resistive load

SPST, 3 A 250Vac

resistive load

SPST, 3 A 250Vac

resistive load

Locat	Location		Signal level	Function	Note
Block	Num		olg.har level		Note
	1	V inv	SPST-NO	Invertor command line 1	Direct load
	2	NO	30 A 250Vac, 20 A 28Vdc		Dial, contact NO
NAE	3	V inv	Direct load	Dower invertor line	Bring the voltage at these terminals for the
IVID	4	С	line of contact C	Power inverter line	type of inverter used
	5	V inv	SPST-NO	la contra concerna della con	Direct load
	6	NO	30 A 250Vac, 20 A 28Vdc		Dial, contact NO

General alarm

Main pump control

Main pump control

Loca	tion	Signal level		Signal level Function			
Block	Num		Ū				
	1	Vint +	Positive power	Power tab			
NAG	2	Vint -	Negative power	1639186			
IVID	3	24V		Dump control			
	4	0 V		Pump control			

Location			Signal Javal	Function	Noto
Block	Num		Signal level	Function	Note
N/7	1	24 Vdc	Positive power	Dowor Invertor Line	For 24)/de invertor
1017	2	0 Vdc	Negative power	Power inverter Line	

6.2 ACTIVATING THE BATTERY FOR REAL TIME CLOCK FUNCTIONS

Fig. 5

By inserting the Jumper into the bridging pins, the battery function is activated and this allows the VIP5 Pro controller (() to operate with the Date/time and status save function when the power is removed.

Note: Every time the battery jumper is removed and reinserted causes the DATE/TIME function to be set to zero. Therefore it is recommended that after inserting the battery jumper, the date and time is set.

6.3 PRECAUTIONS TO BE USED WHEN CARRING OUT WIRING

There is no specific safety risks associated with this device. Use general precautions that you would use when operating an electrical device. All wiring should be carried out by a qualified electrician.

- Before wiring the panel ensure correct voltage as indicated on the product label.
- Only perform wiring operations once you are sure power is off and cannot be accidentally switched on.
- A circuit breaker that is easy accessible must be used in the wiring of the pump. Ensure the break contact has a contact distance of at least 3 mm
- The power connections and pump must have armoured insulation until entrance into the terminals. The cable must be positioned to have no damage to the insulation sleeve.
- Up to the terminal connections. The cable must be routed to avoid damage to the outer isolation sheaf.
- It is advisable to use a fuse or a differential isolation to protect the device. The device should have a recommended value of 0,03 Ampere with 1 millisecond maximum activation time. Isolation capability \geq 10kV and nominal In=6A.

7.1 LAYOUT AND STATUS TABLE OF VIP5 Pro controller 🖾 FRONT PANEL

VIP5 Pro Atex Condition	PUMP ON LED	CYCLE INPUT LED	ALARM LED
Alarm	OFF	ON	ON
Standby Phase	OFF	ON	OFF
Lubrication Phase/Cycle	ON	ON	OFF
Setup	OFF	OFF	ON

VIP5 has three different operating modes which are determined during the setup stage described previously. These are: **CYCLE, PULSE** and **FLOW.**

8.1 CYCLE Mode

In *Cycle* mode a cycle sensor determines the completion of the LUBRICATION PHASE. If using timer setting, the Lubrication Cycle will complete when the timer expire. The Standby phase is determined by a timer or by an external input counter.

8.2 PULSE Mode

In *Pulse* mode, the duration of the *Standby Phase* and the *Lubrication Phase* are both determined by an external counter. The correct operation of the *Lubrication Cycle* can be monitored using a cycle sensor.

8.3 FLOW Mode

Using this mode allows the **VIP5 Pro controller** ^(E) to be used as a simple flow monitoring and display device.

Fig. 8

8.4 PRELUBE

The Prelube cycle is a pre-lubrication cycle that is triggered when the system is powered on or reset. If the pre-lube cycle value is set to 1 or greater the VIP5 Pro Atex will perform the set number of *Lubrication Phases*.

Note that if Each *Lubrication Phase* comprises two or more *Lubrication Cycles,* then the total cycles performed will be equal to the *Lubrication Cycles* multiplied by the *Prelube* Cycles.

9.1 MONITORING OPTIONS.

There are four possible Cycle Monitoring Options, explained below.

1) DL - DUAL LINE

Dual Line cycles generally use two pressure switches connected to **P1** and **P2**.

The **VIP5 Pro controller** (D) starts the pump and must see that **P1** switch is closed within the timeout time. After this, the Lubrication lines are inverted by use of a directional valve.

The **P2** switch must also then be made within the timeout timer setting.

A user configurable **DELAY** timer can be set to filter pressure spikes as in the **PS** operating mode.

Fig. 9

2) TIMER - TIME ONLY

The Lubrication cycle is simply operated according to a preset Timer value.

Therefore, **no input is monitored** to confirm the correct completion of the lubrication cycle.

3) PS - PRESSURE SWITCH

Pressure switch monitoring is typically used in injector system.

The **VIP5 Pro controller** will monitor input **P1** to verify that it is an **OPEN** contact at the start of the cycle.

The pump is activated and the pressure switch must **CLOSE** within a timeout period otherwise a cycle alarm is generated.

Once the **P1** contact is closed, a **DELAY** timer checks that the switch is not broken for a set time before switching off the pump. This ensures that pressure spikes at the start of a lubrication cycles on long lines are filtered out.

A **WAIT** timer can be set to allow the injectors to reset when using multi cycle configuration.

4) SEP – SERIES PROGRESSIVE

Series progressive Operating mode is used for Cycle switch monitoring typically on progressive systems.

The Pump is switched on and P1 input is monitored and must change state twice within the timeout period otherwise a timeout alarm will be generated.

Once P1 changes state twice, the pump is switched off and **VIP5 Pro controller** (G) goes to standby or the Lubrication Cycle is repeated for the desired number of times.

There is no WAIT time in this mode as progressive systems do not need venting time.

The following section explains how to navigate the VIP5 Pro controller 🖾 setup menus and contains detailed explanation of each parameter and possible values.

10.1 Navigating around the setup menu.

The navigation map below shows how to navigate around the setup menu.

To enter the SETUP menu from the OPERATING Mode, hold the (Mode) button for 5 seconds.

The (Up and Down) keys allow scrolling through the parameters.

By pressing the Mode button again, the indicated parameter value can be modified by using the Up and Down keys.

To exit, use the OK (OK) key, or Esc) if you with to exit without saving.

10.2 MENÙ BASIC / EXTENDED

All'avvio il VIP5 Pro presenta un menù "BASIC" che consente all'operatore un rapido settaggio iniziale dell'impianto. Questo menù è molto utile per configurare i parametri principali di un ciclo ed è prevalentemente utilizzato con il prodotto VIP5. Per questo tipo di prodotto invece, nato principalmente per la gestione di impianti a linea doppia, è necessario selezionare "extended" per accedere al menù completo di configurazione.

Per la lista completa dei parametri avanzati del VIP5 Pro impostabili tramite menù esteso fare riferimento alla tabella del par. 10.3.

10.2 PARAMETERS AND VALUES

The following table shows the parameters and possible values of **VIP5 Pro controller** (B). The first two parameters (MODE and TYPE) determine what parameters are available in the menu and they are the first that must be set.

PARAMETER NAME	DEFAULT VALUE	DESCRIPTION	VALUES/ RANGE	APPLICABILITY							
		SELECT THE OPERATIMG MODE:									
		Flow monitoring mode	FLOW								Ţ
		Lubrication Cycle completed when the cycle sensor confirms correct lubrication	CYCLE				CYCLE	LOW			
		Both Standby and Lubrication Phase determined by external signal.	PULSE						PULSE		
		SELECTS THE CYCLE MONITORING:							Х	Х	
		Timer only	TIMER					1			
		Progressive Cycle switch	P3 SED								
T 105		Dual Line cycle with control signals				1	Š				
ТҮРЕ	SEP		DUAL		DUA	SEP		No 2			
		Timed Dual Line cycle	DUAL TIMED	DUAL	ŕ						
INVERTER	PNEUM	Type of connected inverter for Dual systems	PNEUM-ELETT		Х				Х	Х	
INVER.Ton	3s	Time for inversion	0,1s - 25,0s	Х	Х				Х	Х	
INVE.Wait	.null.	Waiting time for inversion command and pump	1s - 1h	Х	х				Х	Х	
CYCLE TOUT	2 min	Timeout counter determines how long to wait for cycle completion before a timeout alarm is generated	1s - 1h		х	х	х		х	х	х
LUBE TIME	2 min	In timer Mode, how long the pump will run	0s – 99h					Х		Х	
CYCLE CNT	1	The Duration of the Lubrication cycle (in PULSE Mode)	1 - 60000	Х	Х	Х	Х	Х	Х		
DELAY TIM	5s	When the pressure switch is made, how long to keep the pump running to ensure that the signal is genuine and not a pressure spike	0s – 2min	x	х		х		х	х	
		With FLOW mode time that alarm condition must exist before being reported									x
SUSPEND T	1s	In Pulse Mode, will suspend the Lubrication Phase if a signal is not received	Null – 2min	х	х	х	х	х	х		
PAUSE CNT	1	Counter for standby phase (PULSE input). See: PAUSE MULTIP.	Null -250 (cycle mode) Null-60000 (pulse mode)	x	х	х	х	x	х	x	
SUSPEND	Never	With cycle mode suspend remote signal on pulse input can be connected. The lubrication cycle is completed before any suspension	Never, In Pause In Cycle, Always	x	х	x	x	x		x	
		Determines Standby Phase Timing									
		Time based Standby	Time								
		A set number of external PULSE signals	Counter	х	x	х	х	х		х	
PAUSE BY	Timer	Whichever of above 2 events occurs first	Time & Counter								
		By PULSE signals. However, if PAUSE TIM. is reached, an alarm will be given	Tout & Count								
PAUSE TIM.	6m 00s	Standby Timer setting. Null means the standby phase will be skipped	Null – 99h 00m	х	х	х	х	х		х	
PUMP	Continuous	Pump output can be constant signal, pulsed signal or synchronized with control signal (see next 3 parameters)	Continuous, Pulsed syncronvzed	x	х	x	х	х	x x	х	
PUMP TON	5.0	Sets the ON value of the pump pulse	0,1-25.0s	Х	х	х	х	х	х	х	
PUMP TOFF	5.0	Sets the OFF value of the pump pulse	0.1-25.0s	Х	х	х	х	X	х	х	
PAUSE MULTIP.	1	Multiply pause settings by 10 or 100 to achive more higt values. See: PAUSE CNT	1; 10; 100	x	х	x	x	x	Х		
LUBE CYCLES	1	Number of Lubrication Cycles to complete a Lubrication Phase	1 - 250	х	х	х	х	х		х	
BOOST CYCLES	1	In a SEP mode, If P2 input is closed the LUBE CYCLES values is increased by this value contained in this setting	1 - 250			х				х	

PRELUBE	0	Number of Prelube Cycles	0 - 250	X	Х	Х	Х	Х		Х	
WAIT TIME	10s	Time between two Lubrication Cycles within the Lubrication Phase	Null - 2 min	х	х	х	х	х		х	
		Determines state at power on:									
START IN	Resume	Start in Lubrication Phase	Lube	х	х	Х	х	х	х	Х	
	Resume	Resume from power down state	Resume								
FLOW VALUE	1,0	Informational value of how much lubricant is dispensed per Lubrication Cycle	0,0 - 1000	х	х	х	х	х	х	х	х
UNITS	Counts	Information Unit for the flow value parameter used for display purposes only	Counts, CubicC., Liters, Pints, Gallons, Kilos, Grams	х	х	х	х	х	х	х	х
FLOW MIN	10,0	Minimum Flow Setting Totally excludes flow alarm if null	0,0 - 6000								х
FLOW MAX	100,0	Maximum Flow Setting	0,0 - 6000								Х
		How REMOTE ALARM is managed									
ALARM	Standard	Relay is powered off during alarm	Standard	x	x	x	x	x	x	x	x
	Standard	Relay is powered On during alarm	Inverted		[^]	~	~	~	Â	Â	~
		Coded alarm is signalling	Coded								
		Determines what Alarm conditions should stop the VIP5 Lubrication cycles VIP5 Pro									
		lever stop the lubrication cycle On None									
	On All	All alarm conditions On All				х	х	х	х	х	
STOP		All but min Level stops the Vip5 pro All But Min Level									
		Only minimum level alarm stops the VIP5	Only minimum level alarm stops the VIP5 All But Max Level All but Maximum Level Minlev Only								
		All but Maximum Level									
MIN. LEV. INPUT	NC	Configuration for the input signal of minimum level	NC, NO, 4 - 20mA	Х	х	Х	Х	Х	Х	Х	
LO LEVEL MA	19,8	Setting a low level if you use 4-20mA input	4,0 - 20,0	х	х	х	х	х	х	х	
HI LEVEL MA	4,2	Setting a high level if you use 4-20mA input	4,0 - 20,0	х	х	х	х	х	x	х	
MININPUT DELAY	0,5s	When resetting a low level alarm, grace period before monitoring level inputs	0s-5s	х	х	х	х	х	х	х	
HI LEVEL IN	NO	Setting for max level signal	NC, NO	Х	х	Х	Х	Х	х	Х	
THERMAL INPUT	NO	Setting for thermal protection signal	NC, NO	х	х	Х	Х	Х	х	Х	
FILL Tout	.null.	Max time for refilling activation after minimum level is switched off	Null – 10 h	x	х	х	х	х	x	x	
AIR Delay	0,5s	Drop-out delay after switching off the pump control	0,1 - 25,0s	x	x	х	х	х	x	х	
DATETIME	Disable	Enable or Disable the Real Time clock functions. Note: be sure battery is connected	Enable, Disable	х	х	х	х	х	x	х	х
DAY	1	Date Time: Day setting	1 - 31	Х	х	Х	Х	Х	Х	Х	Х
MONTH	1	Date Time: Month setting	1 - 12	Х	х	Х	Х	Х	Х	Х	Х
YEAR	2000	Date Time: Year setting	2000 - 2099	Х	х	Х	Х	Х	Х	Х	Х
HOUR	0	Date Time: Hour setting	0 - 23	Х	х	Х	Х	х	Х	Х	Х
MINUTE	00	Date Time: Minute setting	0 - 59	Х	х	Х	Х	х	Х	Х	Х
SET DEFAULT VAL.		RESET TO FACTORY DEFAULT SETTINGS	Yes - No	x	х	Х	х	Х	х	х	х

10.4 SPECIAL FUNCTIONS:

1) **LCD CONTRAST ADJUSTMENT:** by Pressing ESC or OK during power on or immediately after a reset, you access the menu for adjusting the contrast of LCD; hold down OK the contrast decreases, with ESC increases;

2) **FLOW TOTALIZER DATA VISUALIZATION: w**ith the VIP5 Pro Atex in standby mode, pressing the OK key will allow you to scroll through the current average flow rate, or the total volume dispense in the last DAY, HOUR or TOTAL since last reset;

3) **RESETTING THE FLOW TOTALIZER: d**uring the visualization of the above parameters the flow can be reset by holding the DOWN key;

4) **TIME AND DATE:** during standby, it is possible to view time and date by using the ESC key only if DATETIME parameter is set on "enable";

5) **EVENT LOG VIEWER:** by holding the Up or Down key for five seconds it is possible to scroll through the Event Log. (Available in version FW 2.xx onwards)

Following shows the maximum dimensions and mounting positions of the panel.

11.1 UN-PACKING

Once the installation point has been identified, you can unpack the **VIP5 Pro Atex** from its shipping box. Check that the unit has not been subject to any damage during transport. Dispose of the packaging in an appropriate manner, following local waste regulations.

Fig. 13 Vip5 Pro Atex

11.2 INSTALLATION

The **VIP5 Pro Atex** must be secured physically to a mounting location and cabled to all the required components of the lubrication system.

The following are general recommendation:

- Install the unit in an easy to access location so that users can avoid unnatural postures and have good visibility of the display.
- Leave 100mm or 4 inches around the unit of space to facilitate cabling and maintenance.
- Do not install the unit in dangerous or excessively aggressive environments with high levels of vibration or in the vicinity of flammable substances.
- Always use the four fixing points as indicated in the diagram.
- For installation, use the holes shown in the previous paragraph.

<u>ATTENTION:</u> The VIP5 Pro Atex should only be repaired by qualified Dropsa technicians.

12.1 ALARM CODE TABLE

The following is a list of possible alarms generated by the VIP5 Pro Atex with information for troubleshooting purposes.

ALARM CODE	DESCRIPTION	NOTES/CHECKS/SOLUTIONS
ALARM 01	LOW LEVEL	The Low level sensor has triggered. Replenish the oil reservoir.
ALARM 02	CYCLE TIMEOUT	The cycle switch has not been detected in the specified time. Make sure that you have set the timer to a value that allows the cycle to complete.
ALARM 03	BOOST WARNING	The P2 input has been activated and the Boost Function has increased the number of Lubrication Cycles in the Lubrication Phase.
ALARM 04	THERMAL PROT.	The Thermal relay trip signal has been detected. Verify and repair.
ALARM 05	PS ALREDY ON	In PS Cycle mode, the pressure switch was already active before the pump was switched on. Check to ensure the venting system is operating correctly.
ALARM 06	PS AFTER WAIT	In PS Cycle mode, the Pressure switch cannot achieve pressure for the duration of the DELAY time parameter. Check parameters are correct and the pump is operating correctly and can maintain pressure.
ALARM 07	NOT IN PRESS.	No Pressure switch detected within the timeout time. Verify pump and pressure switch are operating correctly and there are no leaks.
ALARM 08	PAUSE TIMEOUT	In TOUT & Count Mode, no external signal has been received for the Timeout period setting. Verify external switch is operating.
ALARM 09	HI LEVEL	MAX level is present in tank.
ALARM 10	BAD SET 420MA	Programming error on the 4-20 mA input, modify parameters to have a range MIN-MAX >4mA
ALARM 11	BAD IN 420MA	Incorrect wiring on the 4-20 mA, signal underage or overage
ALARM 12	LO FLOW	In Flow mode, the current flow is below the minimum set level
ALARM 13	HI FLOW	In Flow mode, the current flow is above the maximum set level
ALARM 14	LO FLOWT	In Flow mode, the current flow is below the minimum set level because no flow input signal has been received for the timeout time. This generally indicates a broken sensor or that the system being monitored is switched off.
ALARM 15	UNCODED FAIL	An unknown Internal error has occurred. Try resetting the unit. If the error re-occurs, the unit must be returned to Dropsa for inspection.
ALARM 16	EXTERNAL PRESSURE	Overpressure alarm and safety signal in air-oil systems.

12.2 RESTART/RESET

When an alarm occurs it is displayed on the LCD display with the alarm number and a brief description of the alarm. For Example:

	ALARM 11	
setup	r	eset

By pressing the button located under the "Setup" label, the user can go and modify the parameter values if it is some incorrect parameter that is causing the alarm.

By pressing the button located under "Reset" (or the hard reset button) the VIP5 Pro Atex will restart its programming with the last saved parameters.

12.3 REMOTE CODED ALARM FUNCTION

The VIP5 Pro Atex controller has the ability to use a remote pulsed coded alarm contact.

Every time the VIP5 Pro Atex control enters an alarm condition, the remote alarm relay contact is activated.

Most alarm contacts are simply a NC or NO contact that gives a remote system indication that the local controller is in a fault condition.

Additionally, the VIP5 Pro Atex can trigger the alarm according to the alarm code being generated and allow a remote PLC (or even a remote LAMP signal) to read the number of the alarm being generated.

This is done by pulsing the alarm relay in 500ms bursts with a 2000ms gap between each signal burst.

The timing chart below shows how to interface the logic with your PLC.

Alarm code	e= number of	(T1+T2)						
T1= 500ms	= alarm cont	act activation	time					
T2= 500ms TWait= 200	= alarm conta 00ms= pause 1	act deactivati time before re	on time epetition of s	ame alar	m code			1 1
T1	. T2 T1	T1 T2 T1	T Wait	T1 T2	T1	T1	T2 T1	T Wait

13. MAINTENANCE PROCEDURES

VIP5 Pro Atex has been designed not to require any regular maintenance. We recommend to occasionally cleaning the unit with a damp cloth, not using solvents

The battery life is approximately 10 years. In the event that the battery needs to be replaced you should note that there are two possible battery types.

- a) A Soldered type battery that must be removed and re-soldered.
- This type of battery can be obtained from Panasonic PART NUMBER BT-CR2032-H, easily purchased all over the world. b) The replaceable type battery can be simply removed and replaced.

This type of battery can be obtained from Panasonic PART NUMBER CR2032, easily purchased all over the world.

14. DISPOSAL PROCEDURES

The unit does not contain any harmful substances and should be disposed of following local regulations, including any recycling information indicated on the components themselves.

15. ORDING INFORMATION

VIP5 Pro 🖾

	CODE	DESCRIPTION
1639213 VIP5 <i>Pro</i> 🐵	1639213	VIP5 Pro 🖾

15.1 STANDARD EQUIPPEMENT

The standard of the **Vip5 Pro** ⁽¹⁾ provides:

- N°4 glands M20
- N°2 glands M25
- N°4 glands M16
- N°4 plugs M20

15.2 SPARE PARTS AND ACCESSORIES

Here is a list of glands and cap codes purchased from Dropsa SpA:

Cod.: 75053 glands M20

Cod.: 75066 glands M25

Cod.: 39384 glands M16

Cod.: 75070 plugs M20

<u>/!</u>

16. MOVING AND SHIPPING

Use suitable padded packaging when shipping the Vip5 Pro and ensure that no damage has been sustained before reinstallation.

17. OPERATING PRECAUTIONS

<u>ATTENTION</u>: It is necessary to carefully read about the instructions and the risks involved in the use of lubrication machines.

The operator should make sure he fully understands the operating and safety procedures of the VIP5 controller and any connected machinery or devices.